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Abstract

In the search for physics beyond the standard model, it is especially impor-
tant to be mindful of the uncertainty associated with various measurements
when interpreting the results of a collision experiment. This study examines
a potential systematic error in the CMS detector. In particular, this study
investigated the possibility of a momentum-dependent bias in the curvature
measurements of the detector caused by a geometrical weak mode. This bias
can cause uncertainty in transverse momentum (pT) measurements for muons,
which can propagate into uncertainty in the reconstructed dimuon mass spec-
trum. By using the cosmic muon data collected in 2015, the study was able to
demonstrate that the curvature bias in the CMS detector is minimal, causing
an apparent curvature shift of 0.01 ± 0.07 C/TeV. This bias translates into
a scaling factor for pT that increases as 0.001% of the pT in GeV. However,
the uncertainty that results from this bias disproportionately affects high-pT
muons, and as a result, propagates into larger uncertainties in the observed
yield of high-mass dimuons. Because evidence for compositeness would appear
in the high-mass regions of the spectrum, it is essential to quantify the uncer-
tainty in this yield. Using qq̄ → µ+µ− collision events generated in Pythia8,
the effects of a pT uncertainty in the dimuon mass spectrum were quantified.
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1 Introduction

1.1 CMS Detector

A hundred meters underground in the small agricultural commune of Cessy, France resides a
massive cylindrical onion of metal detectors known as the Compact Muon Solenoid (CMS) (see
Figure 1). It is one of two general purpose detectors at the Large Hadron Collider (LHC), which
is currently the world’s largest particle collider. Spanning a diameter of 15 meters and a length
of 21 meters, the CMS detector is the second largest particle detector by volume1. However,
it is the heaviest detector in the world, weighing about fourteen thousand metric tonnes. The
primary role of CMS is to detect the showers of particles that result from high-energy hadron-
hadron collisions. By identifying and tracking these outgoing particles, physicists can make
inferences about the nature of the interactions that give rise to the outgoing particles.

Figure 1: General Schematic of the CMS Detector1

The CMS detector consists of five main layers of specialized detection modules, which extend
radially outward from the cylindrical beamline (see Figure 2). In order from the innermost part
of the detector to the outermost part, these modules are as follows:

1. Silicon tracker

2. Electromagnetic Calorimeter (ECAL)

3. Hadron Calorimeter (HCAL)

4. Superconducting Magnet

5. Muon Detectors and Return Yoke2
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Figure 2: Cross-Sectional Layers of the CMS Detector and Particle Tracks2

The silicon tracker is composed of three inner layers of silicon “pixels” and ten outer layers of
silicon strips. Each pixel has dimensions of about 100 microns by 150 microns and each module
of the strip, giving the inner part of the silicon detector a remarkably high granularity3. When
a charged particle passes through the tracker, its electric field imparts enough energy to liberate
electrons from the silicon atoms, and these freed electrons are redirected to generate a current
readout. Thus, the silicon tracker is able to locate which pixels the charged particles passed
through and reconstruct their paths from the collision point in the beamline.

All of the remaining chambers in the detector are designed to directly or indirectly measure
the energy of the particles produced in the collision. The electromagnetic calorimeter (ECAL)
is composed of thousands of lead tungstate crystals and photodetectors that track and measure
the energy of outgoing electrons and photons4. The crystal is a scintillator material, which
means it luminesces when its electrons are excited by incoming high-energy particles. This
light can then be collected by the photodetectors and converted into an electronic signal for
readout. Electrons and photons leave “light tracks” in ECAL, and are eventually halted as
they lose energy to the densely-packed crystalline atoms. In contrast, hadrons and muons leave
little to no energy in ECAL because they generally possess so much energy that they pierce
through the calorimeter without exciting the crystalline atoms. As such, the ECAL behaves like
a light-based version of the silicon tracker for these particles. Furthermore, because the amount
of light emitted by the scintillator is proportional to the energy of the incoming particle, the
calorimeter also operates as an energy-measuring device.

Next, the hadron calorimeter (HCAL) is used to measure the energy of outgoing hadrons. The
hadrons that pass through ECAL are slowed and stopped by dense layers of scintillator and ab-
sorber materials in HCAL. The absorbing material—generally brass or steel—causes the hadrons
to decay into a“shower” of secondary particles, which then cause the scintillator to emit light5.
As in the ECAL, this light is captured by photodetectors and processed to figure out the energy.

All of the particle identification and path reconstruction in the detector is enabled by the
presence of the superconducting solenoidal magnet, which is the namesake of CMS. It generates
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a magnetic field of 4 Tesla parallel to the beamline axis, and this field flows in opposite directions
on the inside and outside of the solenoid. This allows particles to be identified based on how they
move through the magnetic field. Any charged particle moving through the field experiences a
force perpendicular to its motion, causing the particle to travel in a curved path. The direction
of curvature is related to the sign of the particle’s charge whereas the amount of curvature
is inversely related to the particle’s momentum. For example, protons will curve in the oppo-
site direction to electrons, and high-energy muons will be deflected less than low-energy hadrons.

The final outermost layer of the detector consists of a series of tiled gas chambers which track
the muons that pass through. These high-energy muons are deflected by the magnetic field
of the solenoid, which is greatly enhanced by the presence of the iron in the steel. As they
travel in curved paths through the chambers, they ionize gas molecules along the way. The
ionized electrons are then collected by a positively charged wire running through each of the
gas chambers, and are converted into an electrical signal that pinpoints the 2D location of the
muon. The properties of the muons such as their energy and charge are inferred by analyzing
their curvature through the muon detector.

1.2 Cosmic Muons versus Collision Muons

Although the CMS detector is primarily designed for collision analysis, it can also be configured
to collect data from cosmic particles that are created in the upper atmosphere. This is especially
advantageous because of the wealth of cosmic data and its overall predictability, which make
it suitable for detector performance studies. Because the CMS collaboration is particularly
interested in muons, many of the cosmic studies that are conducted involve cosmic muons. These
cosmic muons are generally very high in energy and pass in and out of the detector, leaving
tracks in the very same chambers as their collision-born counterparts. However, because these
cosmics originate above the detector rather than in the beamline, they follow a very different
trajectory than the collision muons. In fact, depending on the angle at which the cosmic muons
enter the top of the detector, they may only pass through the outer muon detection layer, or
be deflected significantly as they pass through the middle of the solenoid (see Figure 3). In
the latter case, the differential magnetic field on either side of the solenoid causes the muon to
appear to have two separate tracks, which are often labeled the upper leg and lower leg.

Figure 3: Possible Trajectories of Cosmic Muons in the Detector3
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1.3 Objectives

One of the primary goals of CMS is to search for evidence of exotic particles and physics
beyond the standard model. However, as with any search for never-observed phenomena, one
must be cautious when evaluating the uncertainty of the measurements and making an unbiased
interpretation of the results. For this reason, much emphasis is placed on simulations, so that
physicists may be able to get an idea of what kind of results to expect. Furthermore, this allows
experimentalists to design the experiment’s specifications to cover the bandwidth of possible
results. This focuses the experiment, and makes it easier to make conclusive statements about
the data that is collected. In the spirit of this approach, the studies detailed in this paper use
simulation to evaluate the uncertainty in experimentally collected data. The first part of the
study compared experimental cosmic muon data to monte carlo simulations to search for bias
in the detector’s measurements, and the second part of the study used simulations to predict
how this bias would propagate into uncertainty in mass distributions of collision particles.

1.4 Tools of the Trade

The monte carlo simulations used in the first part of the study were taken from the CMS Monte
Carlo Reference Database. These simulations were then analyzed along with cosmic muon data
collected in 2015 with ROOT 6.06/02. For the second part of the study, collision events were
generated in Pythia8 and analyzed with the same ROOT release.

2 Uncertainty in the Tranverse Momentum pT

2.1 Cosmic Endpoint Method

The Cosmic Endpoint Method is an analysis technique for evaluating the potential curvature
bias in the detector7. It presumes that this bias manifests as a constant shift in curvature,
which can be resolved into a pT-dependent scaling of pT (see Appendix A). The motivation for
this presumption lies in the possibility of a geometric distortion in the detector, which would
generate a weak mode that affects the detector’s measurements in a predictable way6. To see
if this is indeed the case, the method uses monte carlo simulations of cosmic muons to check
whether or not the detector is in need of calibration. First, a bias is injected into the simulation
data by adding (or subtracting) a constant to all of the curvature values. Then the χ2 between
the experimental data and the shifted simulation data is calculated to see how much they differ.
This process is repeated for a range of shifts, and the shift at which the χ2 is minimized (i.e.
where there is the most agreement between the experiment and simulation) is taken to be the
bias in the detector. This bias is effectively the “distortion” that one must apply to a theoreti-
cally unbiased set of simulated values in order to generate the measured results.

It should be noted that because the Cosmic Endpoint Method is contingent on the monte
carlo simulations producing unbiased results, the size of the simulated data set must be large
enough to produce good statistics. However, because the method generally uses histogram dis-
tributions of curvature to compare the experimental data to simulation, the two data sets need
not be comparable in size to each other, but should be normalized accordingly.
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(a) pT Histograms

(b) Curvature Histograms

(c) Example Curvature Histograms with Injected
Bias

(d) χ2 vs. Injected Bias

Figure 4: General Procedure of Cosmic Endpoint Method: Subfigure 4a shows the raw
histograms obtained using the 2015 CRAFT data and Asymptotic monte carlo simulation. The
same data was used to produce the curvature histograms shown in 4b. The simulation curvature
data was shifted by a spectrum of biases, and a few examples of the resulting histograms
are shown as curves in Figure 4c. These shifted histograms were compared to the curvature
histograms of the data, and the amount of disagreement between the histograms was quantified
in the χ2 vs. injected bias plot in 4d.
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2.2 Procedure

First, pT histograms were constructed for both the experimental and simulated cosmic muon
data using an average of the upper and lower tracks. Because the muon’s decay time is exponen-
tially distributed8, and because cosmic muons radiate away energy as they travel to the surface
of the Earth, it is expected that their transverse momentum distributions are also exponentially
decaying. This can be seen in the plot in Figure 4a. Next, the pT values were used to build
histograms of the muons’ curvature κ, which is defined as the charge of the muon divided by its
transverse momentum. Motivation for this definition is presented in Appendix B. Since there
is a higher incidence of low-pT muons than high-pT muons, there should be more muons with
high curvatures than low curvatures. Furthermore, because the charge of a muon can take on
values of ±1, the curvature distribution should be roughly symmetric across the y-axis, as is
the case in Figure 4b. A strict magnitude cutoff of 0.005 C/GeV or 5 C/TeV was applied to the
curvature histograms to restrict the range of muons analyzed to those with high pT.

Before comparing the curvature histograms of the experimental data and simulation, they were
normalized to have the same proportion of positive and negative muons. Because the parent
particle of the cosmic muons is a proton (which is positively charged), there will be more pos-
itive muons produced than negative muons. This inherent asymmetry causes the right half
of the curvature histograms to contain more entries than the left. As a result, when scaling
the simulation data down to contain the same number of entries as the data, one should use
two different scaling factors for the positive and negative muons. Thus, the scaled simulation
histogram will have the same number of positive and negative entries as the experimental data.

Next, a bias was injected into the curvature histogram produced by the simulation data. This
was done by shifting each entry in the histogram by a constant amount ∆κ. The shifted
curvature histogram of the simulation was then compared to the curvature histogram of the
experimental run by calculating the χ2 on a bin-by-bin basis. As such, it was imperative to
ensure that the curvature histograms spanned the same range and contained the same number
of bins. The definition of χ2 used for this analysis is defined below:

χ2 =
∑
bins

(observed− expected)2

(observed + expected) /2
(1)

where the observed and expected values represent the heights of the bins in the data and
simulation histograms, respectively. It should be noted that this definition is a modified version
of the standard statistical definition of χ2, and the reason for this is twofold. First, dividing
the squared residuals by the average of the observed and expected values rather than just the
expected value offers protection against the case where either value is 0. This is a possibility
if the data sets are binned too finely so as to generate zero-entry bins in the high-pT/low
curvature regions, which have fewer entries on the whole. The second reason for using this
modified definition of χ2 is that the presence of both the observed and expected values in the
denominator eliminates the need for partiality between the data sets. Consequently, if the data
sets were to be interchanged, the χ2 value would remain the same. However, an argument can
be made for using only the expected value in the denominator, as in the case for the traditional
definition of χ2:

χ2 =
∑
bins

(observed− expected)2

expected (2)

This definition may be preferable if one considers the effects of bias injection into the simulation.
If the Cosmic Endpoint Method aims to compare the χ2 values of different injected biases, then
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these χ2 values must be normalized to the same expected value. That is to say, the denominator
should not change as a function of the injected bias because one is always comparing the shifted
simulation values to the same experimental values. Thus, it makes sense to label the experi-
mental values as the “expected” data set and the simulation values as the “observed” data set.
However, in the case where the denominator is an average of the observed and expected values,
this average may change slightly with the bias, causing the χ2 vs. bias plot to be less smooth.

Once this plot was produced, a polynomial was fit to the region near the minimum χ2. The
curvature bias in the detector was taken to be the injected bias at which the χ2 is minimized.
The uncertainty in this value was defined as the amount the minimizing bias would have to
change to increment the minimum χ2 by 1. In this analysis, a quadratic polynomial was fit to
the graph, so the upper and lower uncertainties were identical.

2.3 Results

The Cosmic Endpoint Method was performed on the 2015 CRAFT run and 2015 Asymptotic
monte carlo data. The results for using the definition of χ2 presented in Eq. 1 are shown in
Figure 5.

Figure 5: χ2 vs. Injected Bias plots: The plot on the left shows a zoomed-out version of
the χ2 plot, whereas the plot on the right shows a zoomed-in version with the bias, uncertainty,
and fit labeled.

As the plots indicates, the apparent curvature bias of the detector is about 0.01 C/TeV with
an uncertainty of 0.07 C/TeV. This bias translates into a scaling factor for pT that increases
linearly by 0.001 times the pT in GeV.

If the definition of χ2 presented in Eq. 2 is used, the calculated bias becomes 0.002 ± 0.06
C/TeV. Although this bias is an order of magnitude smaller, it is within the range of un-
certainty of the first result. Furthermore, the uncertainties in both cases are very close, and
ultimately it is this value that will determine the amount of uncertainty in the yield of the
dimuon mass spectrum.

2.4 Evaluating the Robustness of the Method

Ideally, the results of the Cosmic Endpoint Method would be more or less independent of the
method’s parameters. These parameters include but are not limited to the number of bins
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in the curvature histograms, the track of muon used, and the increment with which to sweep
through various injected biases. To validate the robustness of the method, several tests were de-
vised to check whether the bias and uncertainty varied significantly with each of the parameters.

The first parameter that was examined was the number of bins in the curvature histograms.
Because the χ2 is calculated on a bin-by-bin basis, the number of bins controls how many terms
contribute to the χ2 value. To test the results’ dependency on the bin number, the analysis was
run on the same data sets for a spectrum of bin numbers while holding all of the other variables
constant. The results were obtained using the lower leg of the muon track and are shown in the
figure below.

Figure 6: Testing Bin Number Dependence

As the figure demonstrates, there is little variation in the apparent bias of the detector, and the
uncertainty is fairly consistent throughout. Thus, for a reasonably large data set, the results of
applying the Cosmic Endpoint Method change little with the bin number.

The second parameter that was tested was the increment in the injected biases used to shift
the curvature histogram of the simulation. This increment defines the density of points in the
χ2 plot, and consequently, may affect the polynomial fit near the minimum χ2. The bias and
uncertainty are plotted for various increments in Figure 7. As the plot demonstrates, there is
almost no variation in the bias and uncertainty up to about 0.4 C/TeV. Above this value how-
ever, the bias becomes more unpredictable, and the uncertainty becomes larger. This behavior
is to be expected because the higher the increment size, the fewer injected biases are tested and
the fewer points there are to fit near the minimum χ2. Consequently, the fit may not be a good
representation of the data, yielding a bias that is far from the actual bias in the detector.

Because cosmic muons deposit little energy in the detector’s chambers, there should be a neg-
ligible difference in the pT values for the upper track when they enters the detector and lower
track when they leave the detector. Thus, the apparent bias and uncertainty should be the
same for both tracks. To confirm this, the Cosmic Endpoint Method was run using the pT of
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Figure 7: Testing Dependence on the Increment in the Injected Bias

the upper leg, lower leg, and an average of the two. As Figure 8 demonstrates, the calculated
uncertainty was the same in all three cases (±0.08 C/TeV) and the biases were all within this
uncertainty range of each other.

Figure 8: Testing Muon Track Dependence

Another consideration when running the Cosmic Endpoint Method is the cost to benefit ratio
of normalizing the positive and negative muons separately. Although it would be statistically
preferable to account for the imbalance in the number of positive and negative muons, this
imbalance may not be significant enough to merit an increase in computational runtime of the
code running the analysis. A comparison of the results when using one scaling factor versus two
scaling factors is presented in Figure 9. For the case of normalizing all of the muons together,
the bias was 0.03 ± 0.06 C/TeV, whereas in the case of normalizing the positive and negative
muons separately, the bias was 0.04 ± 0.08 C/TeV. These values are remarkably close, indicat-
ing that it is not necessary to normalize the positive and negative muons separately.
Lastly, the impact of using a constant versus dynamic scale was evaluated. Each time a bias
is injected into the simulation data, all of the curvature values are shifted, causing some that
were within the cutoff range to exceed the upper limit, and some that were below the lower
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Figure 9: Comparison of Grouped vs. Differential Normalization of +/- Muons

cutoff to now be accepted into the region of interest. If the number of entries leaving the region
of interest is not equal to the number of entries entering the region of interest, then a new
scaling factor must be calculated after each applied shift to ensure that the number of entries in
the simulation histogram is exactly equal to the number of entries in the smaller experimental
data set. However, if one presumes that the number leaving and entering are approximately
the same, then one can use the same scaling factor for all injected biases to save computational
power. The results shown in the figure below indicate that this is indeed the case, and that one
need not use a dynamically changing scale.

Figure 10: Comparison of Constant vs. Dynamic Scaling
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3 Propagating pT Uncertainty to Uncertainty in Dimuon Mass
Yield

3.1 Background

Using the 2015 cosmic muon data, the Cosmic Endpoint Method demonstrated that there was
some small apparent curvature bias in the detector. Because there is some uncertainty in this
bias, this translates into some uncertainty in pT, which can propagate into larger uncertainties
in pT-dependent variables. One such variable is the invariant mass. The concept of invariant
mass comes from the energy-momentum relation,

E2 =
(
m0c

2
)2

+ (pc2)2 (3)

where E represents the total energy of the system, p represents its total momentum, c represents
the speed of light (which is equal to 1 in natural units), and m0 is the rest mass, or invariant
mass, of the system. Typically, the invariant mass is not a quantity that is measured, but one
that is reconstructed from other measured variables. Thus, it is subject to the uncertainty of
the variables used to calculate it.

The premise of the second study was to simulate qq̄ → µ+µ− events and analyze the effects
of uncertainty in pT on the reconstructed dimuon invariant mass spectrum. In the highly rel-
ativistic case (E >> m, y → η), the dimuon invariant mass can be written in terms of pT as
follows11:

M =
√

2pT1pT2 (cosh (η1 − η2)− cos (φ1 − φ2)) (4)

This equation shows that the dimuon mass explicitly depends on the muons’ transverse momen-
tum. Any uncertainty in the pT will translate into some uncertainty in dimuon mass, and thus
cause uncertainty in the yield of the mass spectrum above a selected threshold mass. The reason
the mass spectrum is considered rather than the raw invariant mass has to do with the nature of
particle discovery. When two protons collide, a shower of secondary particles is created, which
can give rise to a host of final states. Because new particles that have never been observed would
comprise some small fraction of these final states, it makes sense to look for changes in the dis-
tribution of masses for all of the final states. In this particular case, the dimuon mass spectrum
may contain evidence for compositeness, which is the theory that all leptons and hadrons are
made up of smaller particles called preons. If such small particles existed, then some fraction of
the qq̄ → µ+µ− process would undergo Contact Interaction in which no Z boson intermediate
is required. This would cause the tail end of the spectrum to have a flatter distribution because
of the production of higher-mass dimuons. However, if preons did not exist, then all of the
qq̄ → µ+µ− events would occur via Z boson or virtual photon (γ∗) intermediate, which is a
process called Drell-Yan. The dimuon spectrum for all Drell-Yan events has a steeper, which
indicates that a higher majority of events produce low-mass dimuons12. A comparison of the
two processes is shown in Figure 11.

3.2 Procedure

The premise of the study is to conduct a counting experiment to quantify the effect of uncer-
tainty in pT on the yield in the dimuon mass spectrum. First, qq̄ → µ+µ− events were generated
in Pythia8 at a center of mass energy of 13 TeV. This was done for both the Drell-Yan and the
compositeness model at different energy scales Λ. An example of these invariant mass spectra
are shown in Figure 12.
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(a) Drell-Yan (b) Contact Interaction

Figure 11: Drell-Yan vs. Contact Interaction: In both processes, a quark and an antiquark
produce two muons, but in the case of Contact Interaction, no boson intermediate is required.
This theoretical interaction occurs at an energy scale Λ.

Figure 12: Dimuon Invariant Mass Spectra: The plot shows distributions for the dimuon
invariant mass for the Drell-Yan case and the compositness model for different energy scales of
compositeness. As the energy scale increases, the fewer Contact Interaction events occur, and
the closer the distribution is to the Drell-Yan case.

The invariant mass plots were then reconstructed after taking into account the uncertainty
in pT. Because there are two factors of pT in the dimuon mass formula in Eq. 4, one has the
choice between scaling both factors pT up, scaling both down, or scaling one up and one down.
The amount of scaling may be determined for an arbitrary uncertainty in pT, or one may use
the results of the Cosmic Endpoint Method to convert the curvature bias into a pT-dependent
scaling factor. Thus, the two invariant mass spectra (one before scaling the pT values and
one after) may be compared for differences in yield. This comparison was done by selecting a
minimum mass and counting the number of entries above and including that mass cut. This
integral was performed for a series of mass cuts, and the relative difference between the counts
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was plotted as a function of the minimum mass cut. The relative difference can be written as

Relative Difference =
|Shifted Integral−Unshifted Integral|

Unshifted Integral (5)

The plot of relative difference against the minimum mass gives a tentative estimate of uncertainty
in yield caused by a curvature bias in the detector. This uncertainty will be different for different
mass regions, and also differ depending on the type of scaling in pT. Although the Cosmic
Endpoint Method suggests that there is a monodirectional shift in curvature (which translates
into a bi-directional shift in pT), one can obtain the results of shifting both pT values in the
same direction to obtain a wider band of uncertainty in the yield.

3.3 Results

The results of this study indicate that the relative difference in the yield was quadratically
dependent on the mass. This is to be expected since there are two factors of pT that contribute
to the invariant mass. The first is due to the pT-dependent scaling factor in pT, and the second
is due to the fact that the dimuon mass is approximately proportional to pT. An example of
the relative difference as a function of the minimum mass for a 0.05 C/TeV curvature bias is
shown in Figure 13.

(a) Relative Difference for Bidirectional Shift in
Curvature

(b) Relative Difference for Bidirectional Shift in
Curvature

Figure 13: Relative Difference vs. Minimum Mass: These plots show that the relative
difference between the invariant mass spectrum before scaling pT and after scaling pT increases
with the minimum mass used to count entries. The different colored lines indicate the type of
scaling applied to pT.

As the plots in the figure above demonstrate, the relative difference in the counts increases with
the minimum mass, which indicates that the uncertainty in yield is higher in the higher-mass
regions of the spectrum. Furthermore, on the whole one obtains a greater relative difference
when scaling both of the factors of pT in the same direction as opposed to different directions.
Thus, the maximum dimuon mass can be obtained by scaling both factors of pT upwards, and
the minimum dimuon mass can be obtained by scaling both factors of pT downwards. This
gives a sort of ”yield uncertainty band” for the count of dimuons in a given mass region.

To obtain a more accurate representation of the yield uncertainty band, the actual results
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of the Cosmic Endpoint Method may be used. The actual scaling factor may be obtained by
converting both pT values into curvature values, applying the shift in curvature, adding the
uncertainty to the bias, and then reconverting the curvatures into a now scaled pT. Because
the bias was discovered to be 0.01 ±0.07 C/TeV one should scale up by 0.08 C/TeV and scale
down by 0.06 C/Tev. The scaled pT values may then be used to remake the dimuon invariant
mass spectrum and compare it to the original using the relative difference. The results for the
pure Drell-Yan model and the compositeness model at 16 TeV are shown in Figure 14.

Figure 14: Maximum Yield Uncertainty Band for the DY and Compositeness Models

As the figure above shows, the relative difference is higher in the Drell-Yan case than in the
compositeness model. This means that if actual collision data were subject to a constant bias
in curvature, the difference between the actual invariant mass spectrum and the spectrum
reconstructed from the pT data is higher in the DY case. This means that uncertainty in yield
differentially affects the non-compositeness and compositeness models, which should be taken
into account in the search for compositeness.

4 Conclusions

These first study used a statistical tool called the Cosmic Endpoint Method to show evidence
for some small curvature bias in the CMS detector. While this bias is almost inconsequential,
the uncertainty in this bias translates into uncertainty in pT, which can propagate into larger
errors in the pT-dependent properties of muons. One such property is the dimuon invariant
mass, which is analyzed in qq̄ → µ+µ− events. By applying the curvature bias in the form of
scaling pT, one can quantify the uncertainty in yield in the mass spectrum. The results show
that the relative difference in yield before and after taking the uncertainty in pT into account
increases quadratically with the minimum mass being considered. Thus, when searching for
evidence of compositeness in the dimuon mass spectrum, the larger uncertainty present in the
higher-mass regions cannot be ignored.
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A Curvature Bias as a PT Dependent Shift in PT

Given that the curvature κ is equal to q/pT where q is the charge and pT is the transverse
momentum, a biased or shifted value of curvature can be written as:

κ′ = κ+ ∆κ
q

pT′
=

q

pT
+ ∆κ

1

pT′
=

1

pT
+

∆κ

q

pT
′ =

(
1

pT
+

∆κ

q

)−1
pT
′ =

(
1 +

∆κ pT
q

)−1( 1

pT

)−1
For a small enough bias ∆κ, the above expression can be simplified using a first-order binomial
approximation as follows:

pT
′ ≈

(
1− ∆κ pT

q

)(
1

pT

)−1
pT
′ ≈ pT

(
1− ∆κ pT

q

)
Because the charge q of a muon is always ±1, the above expression can be rewritten as

pT
′ ≈ pT (1±∆κ pT)

which is of the form

pT
′ = αpT

where α is the scaling factor. Since the shift ∆κ is a constant, the scaling factor α is linearly
dependent on pT.

B Motivation for the Definition of Curvature

The magntidue of the magnetic force on any moving charged particle can be expressed as

FB = qv⊥B

where v⊥ represents the velocity component of the particle tangential to the magnetic field.
Because the force acts perpendicular to both the particle’s trajectory and the magnetic field,
the charged particle will travel in a curved path. Thus, one may set this force equal to the
centripetal force for uniform circular motion, as shown below:

qv⊥B =
mv2⊥
r

Solving for r yields,

r =
mv⊥
qB

r =
pT
qB
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In this case, the quantity mv⊥ represents the momentum of the particle perpendicular to the
magnetic field, which in the case of a muon traveling in the detector, is the transverse momentum
of the muon. As the equation shows, the radius of curvature is proportional to the transverse
momentum and inversely proportional to the charge of the muon. The smaller the radius of
curvature, the more the particle is deflected, and the larger the radius, the less the particle is
deflected. Taking into account only the variables that are dependent on the muon’s properties,
one can define a quantity called curvature κ which is simply the inverse of the radius:

κ =
q

pT
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